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Scaling hypothesis leading to extended self-similarity in turbulence
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A scaling hypothesis leading to extended self-similarity~ESS! for structure functions~the qth order mo-
ments of themagnitudeof the longitudinal component velocity differences! in isotropic, homogeneous turbu-
lence is proposed. This is done by generalizing the scale variabler to rg(r /L), with a crossover functiong. By
extending the refined self-similarity, it is shown that the presented scaling also leads to ESS for structure
functions of the energy dissipation rate fluctuations, and to ESS bridging relations between velocity and
dissipation rate moments. Extended self-similarity on the basis of a universal crossover functiong strictly holds
toward the outer scale~L! range only. Yet we find at least approximate ESS toward the viscous, inner scale~l!
range. Furthermore, the probability densities for the velocity differences and the energy dissipation rate fluc-
tuations which are compatible with this ESS are offered.
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I. INTRODUCTION

Intermittency corrections to the K41 theory@1# of the ve-
locity structure functions, or velocity difference moments
orderq, Sq

u(r )5^ur
q&, ur being themagnitudeof the differ-

ence of the longitudinal velocity components between t
points separated by the distancer in homogeneous isotropi
turbulence, are one of the most challenging problems
only in hydrodynamics but also from the nonequilibrum s
tistical mechanical point of view@2–4#.

If r is in the inertial subrange~ISR!, the velocity structure
functions scale with a power law

Sq
u~r !}r z(q). ~1!

The scaling exponentsz(q) are the important objects. In
particular, one asks, about their dependence onq ~see, e.g.,
Refs. @2,3#!. The ISR is well defined only if the Reynold
number is quite large.z(q) therefore have mainly been stud
ied in so-called fully developed turbulence. From experim
tal and numerical points of view, however, it is difficult t
realize developed turbulence with sufficiently wide ISR. Th
is one of the main problems met in the study of intermitten
in turbulence.

If the Reynolds number is only moderate, i.e., if a w
developed ISR does not exist, one cannot clearly observe
power law relation~1!, and no precise determination ofz(q)
is possible. Several years ago, Benzi and co-workers@5# em-
pirically found that even when the Reynolds number is
really large, any two structure functionsSq

u(r ) andSp
u(r ), q

and p being arbitrary integers, show the mutual power la
relation

Sq
u~r !}@Sp

u~r !#zp(q), zp~q!5z~q!/z~p!. ~2!
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This mutual power law scaling@Eq. ~2!#, in terms of other
structure functions instead of the scaler, seemed to hold ove
r ranges much larger than the region in which the origi
power law @Eq. ~1!# is expected to hold. This finding is
known asextended self-similarity~ESS! ~second and fourth
paper in @5#!. After the papers by Benzi and co-worker
many studies were reported on this subject@6#.

The main purpose of the present work is to study a sca
hypothesis in homogeneous, isotropic turbulence, and
show when it leads to ESS. This will provide a derivation
ESS together with insight into its range of validity. In Sec.
in keeping with the conventional refined similarity hypot
esis of Kolmogorov and Obukhov@7#, we propose a scaling
hypothesis for the velocity difference moments and for
coarse-grained energy dissipation rate fluctuations, wh
can be denoted as an extended refined similarity hypoth
~ERSH!. The ERSH is characterized by the presence o
universal scaling functiong(x) with x5r /L, whereL is the
outer scale of the turbulent flow. Such a scaling function w
already been introduced by Benzi and co-workers@5#; these
authors restricted themselves to the ISR-VSR transit
range, found ESS only down to 5h, and did not consider the
apparent dependence of the scaling function on the mom
order q in the viscous subrange~VSR!. Here we will show
how thisg(x)-generalized scaling implies ESS for the stru
ture functions of the velocity as well as of the energy dis
pation rate fluctuations, and that it does so toward the o
scale while its validity toward small scales is deteriorated
intermittency and anomalous scaling exponents. The pr
ability densities for the velocity differences and for the e
ergy dissipation rate fluctuations, which are compatible w
the ERSH, are obtained in Sec. III. The explicit form of th
scaling functiong(x) which characterizes the ERSH towa
the outer scaleL is proposed in Sec. IV. Then Sec. V
concerned with ESS toward smaller,l-range or viscous sub
range scales,l being the inner scale of the turbulent flow
The fluctuation spectrum, characterizing the probability d
sities, and its relation to the scaling exponentsz(q), are dealt
with in Sec. VI. Finally, a summary and remarks are given
Sec. VII.
©2001 The American Physical Society05-1
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II. EXTENDED REFINED SIMILARITY HYPOTHESIS
AND ESS

Let us first consider a fully developed turbulent flow, i.
with a sufficiently large ISR. The Navier-Stokes dynamics
invariant under the transformation~see, e.g., Ref.@8#!

r 85lr , ur 85l2zur , t85l11zt, pr 85l22zpr ,

e r 85l2123ze r , n85l12zn, ~3!

wherepr is the characteristic pressure change over the s
tial scaler, e r is the local energy dissipation rate averag
over a region of linear extensionr, n is the kinematic vis-
cosity, l is an arbitrary positive constant, andz is an arbi-
trary exponent. LetL be the linear scale corresponding to t
largest eddy motion, denoted as theouter scaleof the sys-
tem, andU[uL be the typical velocity difference on thi
outer scaleL, controlled by the external boundary condition
Then L characterizes the crossover scale between the
and the stirring subrange, called the SSR. Note that unde
above transformation@Eq. ~3!# the Reynolds numberRe
5UL/n does not change for any choice ofl andz. Assum-
ing that eL , the energy dissipation rate averaged over
outer scaleL, is constant in time and space, we introduce
scaling exponentszr by

ur}uLS r

L D 2zr

. ~4!

Herezr is a fluctuating variable@8# reflecting theur fluctua-
tions, anduL[(eLL)1/3. The stochastic variablezr is as-
sumed to be stationary along the scale hierarchy in the s
that its statistical characteristics are independent ofr in the
ISR l !r !L. Here l is the inner scale;l 5ah, wherea'10
~cf. first paper of Ref.@9#!; andh is the Kolmogorov viscous
lengthh5(n3/e)1/4. To express the assumed statisticalr in-
dependence differently,̂(zn2^z&)(zm2^z&)& is considered
to decay very quickly withm differing from n. We then write
z instead ofzr .

According to the invariance properties@Eqs.~3!#, the dis-
sipation rate scaling which corresponds to the velocity s
ing @Eq. ~4!# reads

e r}eLS r

L D 2123zr

. ~5!

A consequence of Eqs.~4! and ~5! is the scaling relation

ur

uL
;S e r

eL
D 1/3S r

L D 1/3

. ~6!

This is called the refined similarity hypothesis~RSH!, intro-
duced by Kolmogorov and Obukhov@7# ~K62!. The crucial
assertion of the RSH is that the velocity fluctuationsur and
the energy dissipation rate fluctuationse r are related to each
other by the same fluctuation exponentzr . If we define the
characteristic exponentsz(q) andt(q) in the ISR in terms of
the respective structure functions for the velocitySq

u(r ) @cf.
Eq. ~1!# and for the dissipation rateSq

e(r )[^e r
q& by
02630
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Sq
u~r !}r z(q), ~7a!

Sq
e~r !}r t(q), ~7b!

then Eqs.~4! and ~5!, via Eq. ~6!, lead to the bridging rela-
tion

z~q!5
q

3
1tS q

3D . ~8!

This implies, incidentally,z(0)5t(0)50. The stationarity
of e r in space implies that̂e r&5eL is independent ofr,
which yields the relationst(1)50 andz(3)51 @1,7#. If e r
is assumed not to be fluctuating and also to be indepen
of r, Eq. ~5! yieldszr52 1

3 , which implies the classical Kol-
mogorov exponentzK41(q)5q/3. However, as is argued, th
intermittency of the turbulent fluctuations changes the K
exponent toz(q) and z(q)ÞzK41(q), the difference being
t(q/3). Much work was since devoted to this problem~see
Refs.@2,3,8#, etc.!; Benziet al. ~1996! @5# also discussed the
relation between the RSH and ESS.

As discussed above, if Re is large and turbulence is fu
developed, power laws~7! can be observed in a wide rang
of r. However, in many cases Re is rather limited, and t
bulence is not yet fully developed. Then no sufficiently lar
region of r exhibiting Eq. ~7! might exist. This makes the
analysis of numerical as well laboratory experiments di
cult. Nevertheless, it turned out that the log-log plot ofSq

u(r )
vs Sp

u(r ) lies on a straight line in a range much wider th
the log-log plot ofSq

u(r ) vs r itself. This empirical fact was
first pointed out by Benzi and co-workers@5#, and is called
extended self-similarity. It is quite an interesting findin
One may analogously consider^e r

q& vs ^e r
p&, and conjecture

that ESS also holds for theser-averaged energy dissipatio
rate structure functions. Our paper addresses the questio
how to explain the ESS originally found by Benzi and c
workers, although only down to 5h, to both the VSR and
SSR by introducing a scaling hypothesis. We then exte
this to the possibility of an ESS for thee r structure functions
as well.

Let us first note that scalings~4! and ~5! are a result of a
kind of dimensional analysis despite the presence of fluc
tions. Now the units ofur ande r do not change by multiply-
ing them by dimensionless factors. In the present paper
keeping with this observation, instead of the scaling formu
~4! and ~5! we propose the following extended scaling, e
pected to hold in largerr ranges or even for all relevantr:

ur}uLF r

L
gS r

L D G2zr

, ~9!

e r}eLF r

L
gS r

L D G2123zr

. ~10!

Hereg(x) is taken to be a dimensionless, unique, monoto
cally decreasing, universal function ofx5r /L, which has to
satisfyg(x)51 for l /L!x!1. Furthermore, since no veloc
ity correlations exist for distancesr @L, we require thatur
and e r then become independent ofr, implying g(x)
5-2
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5const3x21 for 1!x. In the opposite case ofx! l /L the
functiong(x) has to lead asSq

u(r )}xq in order to reflect the
regular behavior of the structure function forr→0.

Because of these features of the scaling functiong(x),
scalings~9! and~10! reduce to Eqs.~4! and~5!, if the ISR is
sufficiently large andr is chosen well betweenl andL. In the
same manner as one derives the refined similarity@Eq. ~6!#
from theur ande r fluctuation representations in terms ofz,
from the extended scaling formulas~9! and ~10! one arrives
at the following ERSH:

ur

uL
}S e r

eL
D 1/3F r

L
gS r

L D G1/3

. ~11!

This is the fundamental relation, in addition to Eqs.~9! and
~10!, to derive ESS in the sense of Benzi and co-workers@5#.

Let us introduce the scalesr n by the implicit definition

r n

L
gS r n

L D[b2n, n50,1,2, . . . ,N. ~12!

Hereb, with b.1, is an arbitrary but fixed constant,r 0 being
the solution of (r 0 /L)g(r 0 /L)51, andN is chosen such tha
r N is in the crossover range between the VSR and the I
Note thatg depends on ther n ; in particular these are not
simple geometrically decreasing sequence of scales, un
g51, as is the case in the ISR.

Incidentally, the extended scaling formulas~9! and ~10!,
together with the statisticalr independence ofz, allow one to
derive, for the velocity and the dissipation rate ratios,
following freqently used expressions:

ur n11

ur n

5bz,
e r n11

e r n

5b113z. ~13!

The r-invariant scaling ratios are usually considered in
ISR only. Now they are extended to largerr ranges by in-
cluding the crossover functiong(x). The statistical station-
arity of the ratios is equivalent to the statistical stationarity
the fluctuation variableszr , i.e., their statisticalr indepen-
dence. We keep this now common assumption, and su
tute zr for z in Eqs.~9! and ~10!.

Inserting Eq.~12! into Eqs.~9! and ~10! yields

ur n
5uLbnz, e r n

5eLbn(113z), n50,1,2, . . . ,N.
~14!

The structure functionsSq
u(r ) andSq

e(r ) at the scalesr 5r n

are thus evaluated as

Sq
u~r n!}uL

q^bnqz&[uL
qb2nz(q), ~15!

Sq
e~r n!}eL

qbqn^b3qnz&5eL
qbqnb2nz(3q)[eL

qb2nt(q),
~16!

where we have defined the characteristic exponent funct

z~q!52
1

n
logb^b

nqz&. ~17!
02630
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Here we assume thatz(q) is independent ofn for 1,n,N.
We shall show momentarily that this definition ofz(q) co-
incides with the one given in Eq.~1!. The averagê•••& is
taken over the randomness ofz. Furthermore,t(q) was de-
fined throughq2z(3q)52t(q) in Eq. ~16!, which is the
same as in Eq.~8!.

From the explicit representation@Eq. ~17!# for the scaling
exponents, one can draw the general conclusion thatz(q) is
convex curved downward. It therefore obeys the followi
inequalities@10#:

d2z~q!

dq2
<0, ~18a!

d

dq Fz~q!

q G<0. ~18b!

These inequalities play an important role when mak
probabilistic models of intermittency; for examples, see R
@11#.

The convexity downward follows if one applie
Schwarz’s inequality: ^bnz(q11q2)&<@^bnz2q1&^bnz2q2&#1/2.
Inserting this into representation~17! yields

zS p11p2

2 D>
1

2
„z~p1!1z~p2!…. ~178!

Convexity downward shows that the slopez8(q) can only
decrease, i.e.,z9<0, or Eq.~18a!. It also shows that for any
interval the mean slope is larger than the slope on the r
end of that interval. Applying this statement to the interv
@0,q# implies that z(q)/q>z8(q), becausez(0)50 or,
equivalently, thatqz82z<0, which after dividing byq2 is
the second inequality@Eq. ~18b!#.

Eliminatingb from Eqs.~15! and~16! by substituting Eq.
~12!, we obtain

Sq
u~r !}uL

qF r

L
gS r

L D G z(q)

, Sq
e~r !}eL

qF r

L
gS r

L D G t(q)

.

~19!

We require that ifr is much smaller thanL, by noting that
g(0)51, Eqs. ~19! should coincide with Eqs.~7!. This
proves thatz(q) andt(q) introduced by definitions~15! and
~16! are the same as those conventionally defined in Eqs.~7!.

We can now draw conclusions from the generalized eq
tions ~19!: If r /L is not within the inertial subrangel /L
!r /L!1, the log-log plot of structure functions~19! vs r do
not exhibit a linear relation becauseg(r /L), outside of the
ISR or in the lower and upper transition ranges beyond
ISR, depends onr /L; therefore Eq.~19! does not coincide
with ~7!. Nevertheless, if we plotSq

u(r ) and Sq
e(r ) as func-

tions ofSp
u(r ) andSp

e (r ), respectively, by eliminatingxg(x)
with x5r /L we obtain

Sq
u~r !}uL

q2pzp(q)
@Sp

u~r !#zp(q),

Sq
e~r !}eL

q2ptp(q)
@Sp

e ~r !#tp(q). ~20!
5-3
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Again, the previous definition given in Eq.~2! has been used

zp~q!5
z~q!

z~p!
, tp~q!5

t~q!

t~p!
. ~21!

One should note that the equalityt(1)50 implies thatt1(q)
cannot be defined. This stems from the fact thatS1

e is inde-
pendent ofr, and therefore cannot be used as a substitute
r. Furthermore, again eliminating (r /L)g(r /L) in Eqs. ~19!
but inserting the e-structure function formula into the
u-structure function formula, or vice versa, we obtain

Sq
u~r !}uL

qeL
2pz(q)/t(p)@Sp

e ~r !#z(q)/t(p),

Sq
e~r !}eL

quL
2pt(q)/z(p)@Sp

u~r !#t(q)/z(p). ~22!

The second equations of Eqs.~20! and~22! represent an ESS
first proposed in the present paper. Last but not least, ma
use of the compensated expressions for the structure f
tions @9#, we predict that scaling relations, usingz(3)51,
can be concluded from the Howard–von Ka´rmán–
Kolmogorov structure equation only if the longitudinal v
locity difference itself is taken and not only its magnitudeur
~as we do here!. The presented formulas can well be e
tended to include the possibilityz(3)Þ1. However, note tha
ESS isnot derived here for odd order structure functio
which include the signs of the velocity differences. See a
the second of Refs.@9#. Furthermore, we obtain

Sq
u~r !

@S3
u~r !#q/3

}uL
2pt(q/3)/z(p)@Sp

u~r !#t(q/3)/z(p)

}eL
2ptp(q/3)

@Sp
e ~r !#tp(q/3). ~23!

The above considerations show that even if the struc
functions have no pure power law dependence onr, as is the
case if turbulence is not sufficiently fully developed, a
crossovers to the SSR or the VSR are significant, the ab
power law relationsbetweenthe structure functions them
selves hold, provided a properg(x) can be found. The firs
equation of Eqs.~20! is identical to the conventional ESS
found empirically@5,6#. The second equation of Eqs.~20!,
and both Eqs.~22!, are types of ESS first derived in th
above discussion. Also Eq.~23!, a compensatedbridging ex-
pression, is given here first. The important advantage of
~23! is, that the right-hand side has an exponent which m
sures the intermittency correctionst(q/3) only. If one plots
this, the scale can be much more stretched, and can eve
nonlogarithmic, thus enhancing the visibility of the interm
tency corrections. This eases their identification; see Ref.@9#.

III. PROBABILITY DENSITIES FOR ur AND e r

The probability densitiesPr(u) for ur and Pr(e) for e r
can be evaluated, remembering expression~4! and its present
generalizationur}uL„xg(x)…2zr with x5r /L, by means of
the probability densitiesQ for the exponent fluctuations
These distributionsQ depend, for a givenr /L, on the sto-
chastic variableszr , and thus readQr(zr). The relation holds
02630
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for Pr(u)uduu5Qr(zr)udzr u. If the random exponentszr are
statistically independent ofr, the probability densitiesQn(z)
at the discrete seriesr n of scales@cf. Eq. ~12!# take the
asymptotic form@10#

Qn~z!}Anb2S(z)n ~24!

for largen or, equivalently,r n!L. This result was obtained
in an analysis denoted aslarge deviation theory@10#. The
function S(z) is called the fluctuation spectrum ofz. It is
independent ofn, and is expected to be a universal functio
which characterizes the fluctuations of the magnitude of
velocity differencesur and of ther-averaged energy dissipa
tion ratese r in turbulence via Eqs.~4! and~5!. An ergodicity
ansatz for thez fluctuations implies thatQn(z) have a single
peak structure around the ensemble average^z& of z, the
value which minimizesS(z). Furthermore, assuming tha
S(z) has no inflection point,S(z) turns out to be a concav
function @10#:

S9~z!.0. ~25!

Knowing S(z) and thus the distributionsQn(z), one finds
Pr n

(u)5udu/dzu21Qn„z(u)… and Pr n
(e)

5ude/dzu21Qn„z(u)…. Eliminating z and n in these expres-
sions with the use ofu5uLbnz ande5eLbn(113z), as given
in Eqs.~14!, and finally replacingr n by r, we arrive at

Pr~u!}u21F r

L
gS r

L
D GS„ln(u/uL)/ ln[ ~r /L !g(r /L)] 21

…

3
1

AlnF r

L
gS r

L
D G21

, ~26!

Pr~e!}e21F r

L
gS r

L
D GS„~211 ln(e/eL)/ ln[ r ~ /Lg!(r /L)] 21/3!…

3
1

AlnF r

L
gS r

L
D G21

. ~27!

The structure functions can be written in terms of the pro
ability densities~24! andPr n

(u)}u21Qn„z(u)… as

Sq
u~r n!5E

0

`

uqPr n
~u!du}uL

qE
2`

`

bn[qz2S(z)]dz. ~28a!

Analogously with the correspondinge r distributions, one ob-
tains

Sq
e~r n!5E

0

`

eqPr n
~e!de}eL

qE
2`

`

bn[(113z)q2S(z)]dz.

~28b!
5-4
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Applying the method of steepest descent for largen and
comparing with Eqs.~15! and ~16! immediately yields

z~q!5min
z

@S~z!2qz#, ~29!

and also formula~8!, relatingt(q) with z(q). Equation~29!
can be solved conveniently if the minimum is in the inter
of the interval on whichS(z) is defined. We define the func
tion z(q) as the solution of

S8„z~q!…5q. ~30!

Then

z~q!5S„z~q!…2qz~q!. ~31!

This relation is useful in determining the fluctuation spe
trum S(z) from experiment. If the sets„q,z(q)… are known
from experiment by evaluating the structure function exp
nents, one can obtain the relation„z,S(z)… by numerically
carrying out the Legendre transform~31!.

IV. ISR-SSR CROSSOVER

Batchelor@12# first introduced the empirical interpolatio
or crossover function for the second order velocity struct
function bridging the statistics of the longitudinal veloci
components in the inertial~ISR! and viscous~VSR! sub-
ranges:

S2
u~r !5

eL

15n

r 2

F11S r

l
D 2G [22z(2)]/2 . ~32!

Again we havel 5ah, with the Kolmogorov microscaleh.
From Eq. ~32! one hasS2

u(r )5(eL/15n)r 2 in the VSR (r
! l ) and (a2/15)(eLh)2/3(r / l )z(2) in the ISR (r @ l ). The lat-
ter expression more conventionally is written
bi(eLr )2/3(r /L)t(2/3).

Then, extending this empirical formula~32! to comprise
the transition to the SSR as well,r>L, Lohse and Mu¨ller-
Groeling @13# proposed the more general interpolation fo
mula

S2
u~r !5

a2

15
~eLh!2/3

S r

l
D 2

F11S r

l
D 2G [22z(2)]/2F11S r

L
D 2G z(2)/2.

~33!

This formula was successfully applied to data analysis
Lohse and Mu¨ller-Groeling and by Grossmann and c
workers@9#. Here let us slightly generalize formula~33! by
writing
02630
-
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S2
u~r !5

a2

15
~eLh!2/3

S r

l D
2

F11S r

l D
k l G [22z(2)]/k lF11S r

L D kLG z(2)/kL
.

~34!

Two additional arbitrary constantsk l and kL have been in-
troduced, describing the respective widths of the crosso
regions. Takingk l5kL52 corresponds to the original inter
polation @Eq. ~33!#. One easily finds that Eq.~34! yields the
asymptoticsS2

u(r )}r 2 for r ! l and S2
u(r )}r z(2) for l !r

!L, irrespective of the value ofk l , andS2
u5const, ifL!r ,

again irrespective ofkL . We now discuss first the regionl
!r . Then formula~34! reduces to

S2
u~r !5

a22z(2)

15 S L

h D z(2)2(2/3)

uL
2F r

L
•

1

F11S r

L D kLG1/kLG z(2)

.

~35!

Comparing this interpolation formula~35! with S2
u(r )

}uL
2@(r /L)g(r /L)#z(2) from Eq. ~19! in the particular case

q52, for the crossover function we find

g~x!5
1

~11x
kL!1/kL

~36!

without any constant factor.
The outer scaleL characterises the crossover range b

tween the inertial and the stirring subranges, the ISR and
SSR. The fluctuation statistics changes within this crosso
region. The width of this crossover range depends on
moment orderq. We shall estimate this now. Let us rewri
the first equation of Eqs.~19! by making use of the explicit
form of the scaling functiong(x) according to Eq.~36! as

Sq
u~r !}uL

q f q~r !, f q~r !5F11S L

r D kLG2z(q)/kL

. ~37!

Note that l !r is considered.Sq
u}r z(q) for l !r !L and Sq

u

}const forL!r are recovered from Eq.~37!.
The ISR-SSR crossover takes place atr'L, independent

of q by construction ofg(x). The crossover range width i
written as 2dLq . The lower scaleLq[L2dLq , where the
crossover starts, is defined as that scaler for which Sq

u(r ),
viz. f q(r ), has just half the magnitude it has at the crosso
centerL itself:

f q~r 5Lq!5
1

2
f q~r 5L !. ~38!

This is a possible and reasonable definition, becausef q(r ) is
an increasing function ofr for q, for which z(q).0. On the
other hand, forq with z(q),0, f q(r ) is a decreasing func
tion of r. We then defineLq by

f q~r 5Lq!52 f q~r 5L !. ~39!
5-5
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Using these definitions and insertingf q(r ) from Eq. ~37! we
obtain the crossover scaleLq as

Lq5L@211kL /uz(q)u21#21/kL, dLq5L2Lq . ~40!

Thus, indeed, the widthdLq of the crossover range, which i
positive, depends on the moment orderq. Particularly, noting
z(0)50, z(3)51, and uz(6`)u5`, we find L050, L3

5L/A7'0.38L, and L6`5L for kL52, corresponding to
dL05L, dL350.62L, anddL`50. Thus, if we look at the
fluctuations through the ‘‘filtering’’q50, there exists no
ISR. The general observation is that the crossover ra
shrinks with increasing moment orderq.

V. ESS TOWARD SMALLER SCALES, THE VSR?

We have derived that ESS is valid toward and well in
the stirring subrange SSR by generalizing the scaling v
able from r /L to (r /L)g(r /L), i.e., by introducing a cross
over function g(r /L). This ESS confirmation is in good
agreement with the results obtained in the second of R
@9#, where the extension of the ESS toward larger scales
first noted. The original idea of the ESS was more direc
toward smaller scales@5#. Empirically there was quite a bi
of support for this hypothesis. Therefore the observation
Ref. @9# that it is large scales instead of small ones towa
which ESS holds, came with some surprise. We now disc
the question of ESS toward the VSR scales by again usin
crossover scaling variable (r / l )g(r / l ), now in thel crossover
range.

Consider the generalized interpolation formula~34!. Now
take eddy scalesr in the inertial and viscous subranges, b
well below the outer scaleL. With the abbreviationy5r / l ,
from Eq. ~34! we have

S2
u~y!}

y2

~11yk l ! [22z(2)]/k l
, ~41!

leading to}y2 for y5r / l !1 and to the ISR scaling}yz(2)

for 1!y5r / l but still y!L/ l . In order to compare with the
pure power law@Eq. ~1!# or with the generalized power law
@Eq. ~19!#, the latter having the crossover functiong in-
cluded, reading here as

S2
u~y!}F r

l
gS r

l D G
z(2)

, ~42!

we rearrange expression~41! into

S2
u~y!}F S yk l

11yk l
D 2/„k lz(2)…

~11yk l !1/k lG z(2)

[@yg~y!#z(2).

~43!

In contrast to the ISR-SSR crossover functiong given as Eq.
~36!, g(y) here depends on the anomalous scaling expon
z(2):
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g~y!5~11y2k l !2(1/k l )„[2/z(2)]21…5H y[2/z(2)]21, y!1,

1, y@1.
~44!

This crossover function shows, in particular, the correct sc
ing in the VSR,S2

u} „yg(y)…z(2)5y2, and in the ISR one
correctly findsS2

u}„yg(y)…z(2)5yz(2). If we write the gen-
eral scaling with thisg,

Sq
u}F r

l
gS r

l D G
z(q)

, ~45!

it depends onz(2), i.e., on the intermittency correction itsel
For y!1 we haveSq

u}y2z(q)/z(2), which does not have the
regular power law behaviorSq

u}yq for y}r→0. We have to
conclude that ESScannotbe extended toward the VSR, eve
if a crossover function is introduced. This is in perfect agre
ment with the results found in Ref.@9#, second paper.

In the case of K41 turbulence, i.e., without intermitten
influences,g(y) from Eq. ~44! with z(2)52/3 simplifies to

gK41~y!5~11y2k l !22/k l5H y2, y!1,

1, y@1.
~46!

Now, in K41 turbulence, for which we havez(q)5q/3, one
can derive a generalized ESS, usingg(x) from Eq. ~46!:

Sq
u}„yg~y!…z(q)5H yq, y!1,

yq/3, y@1.
~47!

All ESS formulas~20!–~23! are valid for K41 turbulence
~although one does not really need them in this case! because
the factors 1

3 cancel in zp(q). We conclude that it is the
deviation of z(2) from the K41 value 2/3 which prohibits
introducing a universal crossover functiong(y). Sincez(2)
2zK41(2)5t(2/3) is very small,'0.03, ESS isnearlyvalid
for intermittent turbulence;nearlymeans ‘‘order of intermit-
tency corrections.’’ In particular, in log-log plots over typ
cally rather restrictedr ranges in the VSR of about a one
fifth of a decade, this deviation will hardly be visible for
not too large value ofq. Therefore ESS at least approx
mately also holds toward the VSR in intermittent turbulen
although strictly speaking it is not valid. However, note th
in plots with compensated structure functions, which are s
sitive to intermittency corrections, one will find that ES
does not hold because here these corrections are the lea
terms. All this is in good agreement with the results of Ben
and co-workers@5# as well as of Grossmann, Lohse, an
Reeh@9#. In particular this only approximate validity of ESS
deteriorated by the anomalous scaling deviations, allows
to understand the empirical finding@5# that ESS can be see
only for r>5h.

VI. FLUCTUATION SPECTRUM

We now determine the fluctuation spectrumS(z) of the
velocity difference fluctuationsu}(r /L)2z. To do this we
consider stochastic models as, e.g., the log-normal or
Poisson models. The log-normal model@2,7,14# yields a
parabolic form ofS(z), and is given in terms of one param
eter only, the intermittency exponentm ('0.2), as
5-6
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t~q!5
m

2
q~12q!,

implying

S~z!5
9

2m S z1
1

3
1

m

6 D 2

. ~48!

S(z) here was obtained fromt(q) via z(q) and the Legendre
transform algorithm, described above in Sec. III.

Very recently, Watanabe and one of the authors@11# dis-
cussed theq dependence of the moment exponentsz(q) as
well as the spectrumS(z) of the She-Leveque model, whic
is a log-Poisson model@15#. A comparison with theb model
@16# was made, and the differences between these two m
els were elucidated. In Ref.@11# it was shown that for large
q ~with q.0) the exponent functionz(q) and the corre-
sponding@cf. Eqs.~30! and ~31!# fluctuation spectrumS(z)
can be described by the expansions

t~q!52gq1d02Ce2q/q
* , ~49!

S~z!5d023q* S z1
12g

3 D lnF3q*

eC S 2z2
12g

3 D G .
~50!

Particularly, employing She-Leveque’s argument@15#, we
obtain

d05C52, g5
2

3
, e21/q* 512

g

d0
5

2

3
, ~51!

which yields

t~q!52
2

3
q12F12S 2

3D qG , ~52a!

z~q!5
q

3
1tS q

3D5
q

9
12F12S 2

3D q/3G . ~52b!

From Eq.~50! with Eqs.~52a! and ~52b!, one finds

S~z!522
3

ln 3
2

S z1
1

9D lnF 3

2e ln 3
2

S 2z2
1

9D G . ~53!

This expression is valid in a region wherez<21/9, more
generally z<2(12g)/3. In K41 turbulence we havez5
21/3, which is less than21/9. Equation~53! is the explicit
formula for the fluctuation spectrumS(z) valid in She-
Leveque’s log-Poisson model@17#. S(z) can be described a
linear in z with logarithmic corrections.

VII. SUMMARY AND REMARKS

In the present paper, we first introduced a scaling varia
xg(x) to include crossovers between various subrange
scaling behavior for the magnitude of longitudinal veloc
02630
d-

le
of

differences in turbulence. This turned out to lead to exten
self-similarity ~ESS! in a quite natural way. We showed tha
the refined similarity hypothesis~RSH! ~see Ref.@7#! can be
generalized by considering a scaling functiong(r /L). The
conventional refined similarity hypothesis is incompatib
with the ESS, but the present similarity hypothesis holds i
much larger region which includes the stirring subran
~SSR!. The fact that ESS is much more valid toward lar
scales can also be found in two-dimensional magneto hy
dynamics simulations@18#. Although extension towards
VSR, strictly speaking, is not valid, it nevertheless holds
least approximately, the deviations being of the order of
intermittency corrections. With the scaling functiong(r /L)
the extended refined similarity hypothesis leads to the
perimentally and numerically observed ESS.

We also found that our proposed scaling hypothesis p
dicts ESS for energy dissipation rate fluctuations as wel
for the bridging relations between the structure functions
the velocity differences and those of the energy dissipa
rate. Also, the considerable advantage of using compens
structure functions was discussed. Furthermore, making
of an extended form of the Batchelor parametrization,
obtained explicit formulas for the scaling functiong(x), cf.
Eqs. ~36! and ~46!. Of course, these can be put togeth
analogously, as indicated in Eq.~34!. The exponent function
z(q) and the eddy fluctuation spectrumS(z) were illustrated
for the log-normal and log-Poisson models. The present
oretical results still have to be compared with measured d

Let us finally comment on the probability density@Eq.
~26!#. For the scaler in the ISR of developed turbulence, th
velocity difference is scaled asur;r h, h being equal to the
exponent (2zr) in Eq. ~4!. The probability density to ob-
serve a local scaling exponent with the valueh is propor-
tional to r 32D(h) @8#, whereD(h) is the fractal dimension,
and is related toS(z) in Eq. ~24! via

S~z!532DS 12z

3 D ~54!

@3#. Benzi et al. ~1996! @5# and Meneveau@6# proposed a
multifractal theory of the probability density for the velocit
differences similar to Eq.~26! to find compatibility with
ESS. From the definition of the fluctuation spectrumS(z)
@Eq. ~24!#, we haveS(z)>0 for the possible values ofz,
which meansD(h)<3. If S(z).3 for somez, D(h) takes
negative values. This implies that although thedimensionis
conventionally positive, one should be aware that the fra
dimension can take negative values.
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