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Scaling hypothesis leading to extended self-similarity in turbulence

H. Fujisakd* and S. Grossmafn
!Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan
2Fachbereich Physik, Philipps-UniversiteRenthof 6, D-35032 Marburg, Germany
(Received 11 February 2000; published 26 January P001

A scaling hypothesis leading to extended self-similafB59 for structure functiongthe qth order mo-
ments of themagnitudeof the longitudinal component velocity differengés isotropic, homogeneous turbu-
lence is proposed. This is done by generalizing the scale varidbleg(r/L), with a crossover functiog. By
extending the refined self-similarity, it is shown that the presented scaling also leads to ESS for structure
functions of the energy dissipation rate fluctuations, and to ESS bridging relations between velocity and
dissipation rate moments. Extended self-similarity on the basis of a universal crossover fgrattiotty holds
toward the outer scal@.) range only. Yet we find at least approximate ESS toward the viscous, inner(l3cale
range. Furthermore, the probability densities for the velocity differences and the energy dissipation rate fluc-
tuations which are compatible with this ESS are offered.
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I. INTRODUCTION This mutual power law scalinfEq. (2)], in terms of other
structure functions instead of the scalseemed to hold over
Intermittency corrections to the K41 thediy] of the ve- I ranges much larger than the region in which the original
locity structure functions, or velocity difference moments of power law [Eg. (1)] is expected to hold. This finding is
orderq, Sﬁ(r)z(u?), u, being themagnitudeof the differ- known_asextended self-similarityES9 (se_cond and fourth
ence of the longitudinal velocity components between twd?aPer m[(;:?_]). After the pa%ers bﬁ/_ Berg)m and co-workers,
points separated by the distance homogeneous isotropic Many studies were reported on this subjedt .
turbulence, are one of the most challenging problems nort1 The main purpose of the present work is to study a scaling
' y

. : o “hypothesis in homogeneous, isotropic turbulence, and to
32’!%;;;? gﬁrﬁ:ﬂégné?nwf?ise?{gfg the nonequilibrum sta show when it leads to ESS. This will provide a derivation of

. O . ESS together with insight into its range of validity. In Sec. I,
If ris in the inertial subrangéSR), the velocity structure in keeping with the conventional refined similarity hypoth-

functions scale with a power law esis of Kolmogorov and Obukhd\], we propose a scaling
hypothesis for the velocity difference moments and for the
Sg(r)“f“q)- (1) coarse-grained energy dissipation rate fluctuations, which

can be denoted as an extended refined similarity hypothesis
The scaling exponent(q) are the important objects. In (ERSH. The ERSH is characterized by the presence of a

particular, one asks, about their dependence; ¢see, e.g., universal scaling functiog(x) with x=r/L, WhereL is }he
Refs.[2,3]). The ISR is well defined only if the Reynolds outer scale of the turbulent flow. Such a scaling function was

number is quite large;(q) therefore have mainly been stud- already been introduced by Benzi and co-workérs these

ied in so-called fully developed turbulence. From experimen@uthors restricted themselves to the ISR-VSR transition

tal and numerical points of view, however, it is difficult to range, found ESS only down torb and did not consider the

realize developed turbulence with sufficiently wide ISR, This@PParent dependence of the scaling function on the moment

is one of the main problems met in the study of intermittencyorderq. in the viscou; subrang(e/S_R). Here we will show
in turbulence. how thisg(x)-generalized scaling implies ESS for the struc-

If the Reynolds number is only moderate, i.e., if a well '€ functions of the velocity as well as of the energy dissi-
developed ISR does not exist, one cannot clearly observe gation rate f_Iuctugtl_ons, and that it does SO towar(_j the outer
power law relatior(1), and no precise determination £fq) ;cale yvh|le its validity toward smaII_ scales is deteriorated by
is possible. Several years ago, Benzi and co-worl&rem- intermittency and anomalous scaling exponents. The prob-

pirically found that even when the Reynolds number is no@bility densities for the velocity differences and for the en-
really large, any two structure functio®(r) andS¥(r), g ergy dissipation rate fluctuations, which are compatible with
1 p ’

> . : the ERSH, are obtained in Sec. lll. The explicit form of the
?é}gt?ogemg arbitrary integers, show the mutual power IaWscaling functiong(x) which characterizes the ERSH toward

the outer scalel is proposed in Sec. IV. Then Sec. V is
" U 12o(a) B concerned with E_SS towgrd smallémange or viscous sub-
Sa(N=[Sp(r) 5, £p(a)=E(a)/E(p)- (2 range scales, being the inner scale of the turbulent flow.
The fluctuation spectrum, characterizing the probability den-
sities, and its relation to the scaling exponef(tg), are dealt
*Email address: fujisaka@acs.i.kyoto-u.ac.jp with in Sec. VI. Finally, a summary and remarks are given in
"Email address: grossmann@physik.uni-marburg.de Sec. VII.
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Il. EXTENDED REFINED SIMILARITY HYPOTHESIS Sg(r)o(r((q), (79
AND ESS
. . . € (a)
Let us first consider a fully developed turbulent flow, i.e., Sa(r)oer ™, (7b)

with a sufficiently large ISR. The Navier-Stokes dynamics is

invariant under the transformatidsee, e.g., Ref8]) then Egs.(4) and(5), via Eq.(6), lead to the bridging rela-

tion
r'=\r, ug=\N"%,, t'=\Y%, p.,=\"%%p, q [q
{(a)= —+T(—>. (8
Er’:)\_l_Bzér, V,:)\l_ZV, (3) 3 3
wherep, is the characteristic pressure change over the spatis implies, incidentally {(0)=7(0)=0. The stationarity

tial scaler, e, is the local energy dissipation rate averagedof & in space implies thafe;)=e_ is independent of,
over a region of linear extensian v is the kinematic vis- Which yields the relations(1)=0 and{(3)=1 [1,7]. If &
cosity, A is an arbitrary positive constant, aads an arbi- 'S assumed not to be fluctuating and also to be independent

trary exponent. Let be the linear scale corresponding to the ©f I EQ. (5) yields z,= — 5, which implies the classical Kol-
largest eddy motion, denoted as theter scaleof the sys- MOYoOrov exponend.(q) =q/3. However, as is argued, the
tem, andU=u, be the typical velocity difference on this intermittency of the turbulent fluctuations _changes th(_a K41
outer scald, controlled by the external boundary conditions. €xPonent to{(q) and (q) # {k41(q), the difference being
Then L characterizes the crossover scale between the ISR(G/3). Much work was since devoted to this problésee
and the stirring subrange, called the SSR. Note that under tHaefs.[2,3,8], etc); Benziet al. (199 [5] also discussed the
above transformatioiEq. (3)] the Reynolds numbeRe relation between the RSH and ESS. _
—UL/» does not change for any choice ofandz Assum- As discussed above, if Re is large and tgrbulepce is fully
ing that e, the energy dissipation rate averaged over the€veloped, power law’) can be observed in a wide range

outer scald., is constant in time and space, we introduce the®f - However, in many cases Re is rather limited, and tur-
scaling exponentg, by bulence is not yet fully developed. Then no sufficiently large

region of r exhibiting Eg.(7) might exist. This makes the
r\ "z analysis of numerical as well laboratory experiments diffi-
E) 4 cult. Nevertheless, it turned out that the log-log pIoS{;}(r)

VS Sg(r) lies on a straight line in a range much wider than
Herez, is a fluctuating variabl€8] reflecting theu, fluctua-  the log-log plot ofsg(r) vs r itself. This empirical fact was
tions, andu, =(e L)Y3. The stochastic variable, is as- first pointed out by Benzi and co-workefs], and is called
sumed to be stationary along the scale hierarchy in the sensxtended self-similarity. It is quite an interesting finding.
that its statistical characteristics are independent iofthe ~ One may analogously considés) vs (eP), and conjecture
ISRI<r<L. Herel is the inner scalel,=a», wherea~10  that ESS also holds for theseaveraged energy dissipation
(cf. first paper of Ref[9]); and 7 is the Kolmogorov viscous rate structure functions. Our paper addresses the question of
length = (% €)Y To express the assumed statisticii-  how to explain the ESS originally found by Benzi and co-
dependence differently(z,—(z))(zw—(2))) is considered workers, although only down to#3 to both the VSR and
to decay very quickly witm differing fromn. We then write.  SSR by introducing a scaling hypothesis. We then extend
zinstead ofz, . this to the possibility of an ESS for the structure functions
According to the invariance properti€&gs.(3)], the dis-  as well.

sipation rate scaling which corresponds to the velocity scal- Let us first note that scalingd) and(5) are a result of a

Uyocup

ing [Eq. (4)] reads kind of dimensional analysis despite the presence of fluctua-
tions. Now the units ofi, ande, do not change by multiply-
ry-ts ing them by dimensionless factors. In th t i
e | = 5) ing them by dimensionless factors. In the present paper, in
G ' keeping with this observation, instead of the scaling formulas

. . _ (4) and (5) we propose the following extended scaling, ex-
A consequence of Eq#4) and(5) is the scaling relation pected to hold in larger ranges or even for all relevant

u, €\ 13/ r\ 13 3 ro(r\-% .
o) o) (6) Uroeu | 9| , 9
This is called the refined similarity hypothe$RSH), intro- ro(r\] 13
duced by Kolmogorov and ObukhdV] (K62). The crucial exe ol (10

assertion of the RSH is that the velocity fluctuatiansand
the energy dissipation rate fluctuatiofnsare related to each Hereg(x) is taken to be a dimensionless, unique, monotoni-
other by the same fluctuation exponent If we define the cally decreasing, universal function ®f=r/L, which has to
characteristic exponent$q) and7(q) inthe ISR in terms of  satisfyg(x) =1 for |/L<x<1. Furthermore, since no veloc-
the respective structure functions for the velo@@(r) [cf. ity correlations exist for distanceas>L, we require thau,

Eq. (1)] and for the dissipation rat8i(r)=(e/) by and €, then become independent aof implying g(x)
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=const x ! for 1<x. In the opposite case of<|/L the
functiong(x) has to lead asg(r)oqu in order to reflect the
regular behavior of the structure function for0.
Because of these features of the scaling functigr),

scalings(9) and(10) reduce to Eqs4) and(5), if the ISR is
sufficiently large and is chosen well betweenandL. In the
same manner as one derives the refined similfEty. (6)]
from theu, ande, fluctuation representations in terms f
from the extended scaling formul&8) and (10) one arrives
at the following ERSH:

rofr

ol

U, € 1/3]
—_c| —
u  \€e

This is the fundamental relation, in addition to E€®). and

(10), to derive ESS in the sense of Benzi and co-workBts
Let us introduce the scaleg by the implicit definition

rn
rg

Hereb, with b>1, is an arbitrary but fixed constamt, being

the solution of (4/L)g(ro/L)=1, andN is chosen such that
Iy is in the crossover range between the VSR and the IS
Note thatg depends on the,; in particular these are not a

13
11

Mn

3 12

)Eb“, n=0,1,2 ... ,N.

simple geometrically decreasing sequence of scales, unless

g=1, as is the case in the ISR.

Incidentally, the extended scaling formulé® and (10),
together with the statisticalindependence dof, allow one to
derive, for the velocity and the dissipation rate ratios, th
following fregently used expressions:

€
T

urn-*—l l_bl+3z

Urn

b?, (13

Grn

e
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Here we assume thd(q) is independent ofi for 1<n<N.
We shall show momentarily that this definition 6fq) co-
incides with the one given in Edl). The averagég- - -) is
taken over the randomness ofFurthermorer(q) was de-
fined throughq—¢(3q)=—7(q) in Eg. (16), which is the
same as in E(8).

From the explicit representatidizq. (17)] for the scaling
exponents, one can draw the general conclusiont is
convex curved downward. It therefore obeys the following
inequalities[10]:

d?¢(q)
<0, 18
= (183
d Z(q)}<
dq{ 7 |=% (18

These inequalities play an important role when making
probabilistic models of intermittency; for examples, see Ref.
[11].

The convexity downward follows if one applies
Schwarz’s inequality: (b"#91+%2)) <[ (p"291)(ph"2242) 12,

I:\jnserting this into representatigt7) yields

pP1t+pP2

1
T)EE(Q"(DQ‘F{(DZ»- 17)

d
Convexity downward shows that the slog&(q) can only
decrease, i.e4"<0, or Eq.(183. It also shows that for any
interval the mean slope is larger than the slope on the right
end of that interval. Applying this statement to the interval
[0,g] implies that £(q)/q={'(q), becausel(0)=0 or,
equivalently, thag’ — ¢<0, which after dividing byg? is

the second inequalityEq. (18b)].

Eliminatingb from Eqgs.(15) and(16) by substituting Eq.

The r-invariant scaling ratios are usually considered in the(12), we obtain

ISR only. Now they are extended to largeranges by in-
cluding the crossover functiog(x). The statistical station-

arity of the ratios is equivalent to the statistical stationarity of

the fluctuation variableg, , i.e., their statistical indepen-

ro/r)\]é@
E9<E” . Sy(r)eef

r 7(q)
L

r
[g

Sy(r)eut
(19

dence. We keep this now common assumption, and substi-

tute z, for zin Egs.(9) and (10).
Inserting Eq.(12) into Egs.(9) and(10) yields

U =ub™, e =b"*%), n=012...N.

14

The structure functionsg(r) and Si(r) at the scales=r,
are thus evaluated as
Sy(rn)uf(b"9)=uflb~ "), (15)

Sq(rn)e €lbIN(p3an2) = lpanp ~NéBa) = iy~ n(a), 9
16

where we have defined the characteristic exponent function

1
£(a)=— =logy(b" . a”

We require that ifr is much smaller thah, by noting that

g(0)=1, Egs. (19 should coincide with Eqs(7). This

proves that'(q) and7(q) introduced by definition$l5) and

(16) are the same as those conventionally defined in &s.
We can now draw conclusions from the generalized equa-

tions (19): If r/L is not within the inertial subrangé/L

<r/L<1, the log-log plot of structure functiori49) vsr do

not exhibit a linear relation becauggr/L), outside of the

ISR or in the lower and upper transition ranges beyond the

ISR, depends om/L; therefore Eq.(19) does not coincide

with (7). Nevertheless, if we plosg(r) and Si(r) as func-

ti(_)ns ofS‘,j(r) ande,(_r), respectively, by eliminatingg(x)

with x=r/L we obtain

Sg(r)xuﬁ_p{p(q)[sg(r)]{p(m’

Si(r)ecel PP Irss(r) 7@, (20
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Again, the previous definition given in E(2) has been used: for P,(u)|du|=Q,(z,)|dz]|. If the random exponents are
statistically independent af the probability densitie®,(2)

() _ () at the discrete series, of scales[cf. Eq. (12)] take the
(@)= (p)’ ()= (p)’ (21) asymptotic form{10]
One should note that the equalityl)=0 implies thatr,(q) Q,(z)%\/nb~S@n (24)

cannot be defined. This stems from the fact tBais inde-

pendent ofr, and therefore cannot be used as a substitute fofor largen or, equivalentlyr,<L. This result was obtained
r. Furthermore, again eliminating/L)g(r/L) in Egs.(19  in an analysis denoted darge deviation theonf10]. The
but inserting the e-structure function formula into the function S(z) is called the fluctuation spectrum af It is

u-structure function formula, or vice versa, we obtain independent of, and is expected to be a universal function,
which characterizes the fluctuations of the magnitude of the
Si(r)ecufle PHOTPILSs(r) 1@ 7P), velocity differencess, and of ther-averaged energy dissipa-
tion ratese, in turbulence via Eq94) and(5). An ergodicity
Sg(r) o efluy PP S (r) J@EP), (22)  ansatz for the fluctuations implies tha®,(z) have a single

) peak structure around the ensemble aver&geof z the
The second equations of Eq20) and(22) represent an ESS yajue which minimizesS(z). Furthermore, assuming that

first proposed in the present paper. Last but not least, making(z) has no inflection pointS(z) turns out to be a concave
use of the compensated expressions for the structure funggnction[10]:

tions [9], we predict that scaling relations, usigg3)=1,

can be concluded from the Howard—von rien— S'(2)>0. (25)
Kolmogorov structure equation only if the longitudinal ve-

locity difference itself is taken and not only its magnitudle  Knowing S(z) and thus the distribution®,(z), one finds
(as we do hene The presented formulas can well be ex-p_(u)=|du/dz ~1Q,(z(u)) and P, (€)
tendeq to include the possibilitg(3)+ 1. However, note that =|nde/dz|*1Qn(z(u)). Eliminating z andn in these exnpres-
ESS isnot derived here for odd order structure functions ;oo\ ith the use ofi=u,_b" and e= ¢, b"+32 as given

which include the signs of the velocity differences. See als . : ;
the second of Refg9]. Furthermore, we obtain I Eas.(14), and finally replacing, by r, we arrive at

(1) r r S(n(u/up)/In[(r/L)g(r/L)] ~ 1)

r —PT7 al -1 - -

uq—/socul- P (q/S)/((p)[Sg(r)] (ar3)/4(p) P, (u)e«<u {L g 1

[S3(n)]°
—p7(9/3 € T 1
e, PPYIsE(r) )7, (23 » ' 26
1
ro(r
The above considerations show that even if the structure In{—g(—”
functions have no pure power law dependence,@s is the L7\L

case if turbulence is not sufficiently fully developed, and
crossovers to the SSR or the VSR are significant, the above v/ r )\ 1S(=1+In(ele)/I[r(/LG)(r/L)] ~1/3))
power law relationsbetweenthe structure functions them- Pr(e)oce_l{—g( ”

L

selves hold, provided a propg({x) can be found. The first

equation of Eqs(20) is identical to the conventional ESS,

found empirically[5,6]. The second equation of Eq&0), 5 27)
and both Eqs(22), are types of ESS first derived in the ro(r\1 Y

above discussion. Also EQR3), acompensatebridging ex- In _g(_)

pression, is given here first. The important advantage of Eq. L™\L

(23 is, that the right-hand side has an exponent which mea-

sures the intermittency correctiong/3) only. If one plots  The structure functions can be written in terms of the prob-
this, the scale can be much more stretched, and can even bbility densities(24) and Prn(u)ocu_lQn(z(u)) as
nonlogarithmic, thus enhancing the visibility of the intermit-

tency corrections. This eases their identification; see [Re&f. % o

Sg(rn)=f0 qurn(u)duuuﬂf wb“[qzﬂzﬂdz. (28a
IIl. PROBABILITY DENSITIES FOR u, AND ¢,

The probability densitie®, (u) for u, and P,(¢) for ¢, ~ Analogously with the corresponding distributions, one ob-
can be evaluated, remembering expres¢rand its present  tains
generalizationu,cu; (xg(x)) % with x=r/L, by means of

the probability densitiesQ for the exponent fluctuations. S (r :fm ap deo qfw pnl(1+32)a-S(2)] ¢ 5
These distributions) depend, for a givem/L, on the sto- alrn) o€ al)deer | '
chastic variableg, , and thus rea®,(z,). The relation holds (28b
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Applying the method of steepest descent for largand r\2
comparing with Eqs(15) and(16) immediately yields a2 (l—)
Sy(r)=z(e.n)*? RIEER AL TRHALE
¢(q)=min[S(2)-qz], (29 15 14" PP A e
) + T 1+ T
(34)

and also formuld8), relating 7(q) with £(q). Equation(29) N ) )
can be solved conveniently if the minimum is in the interior TWO additional arbitrary constantg and «, have been in-
of the interval on whicl(z) is defined. We define the func- troduced, describing the respective widths of the crossover

tion z(q) as the solution of regions. Takingg, =k =2 corresponds to the original inter-
polation[Eq. (33)]. One easily finds that Eq34) yields the
S (2(q)=q. (30 asymptoticsSy(r)=r? for r<| and Sy(r)=r®@ for |<r
<L, irrespective of the value of,, andS;= const, ifL<r,
Then again irrespective ok, . We now discuss first the regidn
<r. Then formula(34) reduces to
{(q)=3(z(9))—qz(q). (3D 222 [\ {@-@3) [, 1 «(2)
This relation is useful in determining the fluctuation spec- Y 1+ r
trum S(z) from experiment. If the set&y,£(q)) are known L
from experiment by evaluating the structure function expo- (35)
nents, one can obtain the relatidn S(z)) by numerically . o , ) u
carrying out the Legendre transfor(81). Comparing this interpolation formula35) with S;(r)

cu?[(r/L)g(r/L)1¢?® from Eq. (19) in the particular case

g=2, for the crossover function we find
IV. ISR-SSR CROSSOVER

Batchelor[12] first introduced the empirical interpolation . 1
or crossover function for the second order velocity structure 9(x)= (14X Vs
function bridging the statistics of the longitudinal velocity
components in the inertiallSR) and viscous(VSR) sub-  without any constant factor.

ranges: The outer scald. characterises the crossover range be-
tween the inertial and the stirring subranges, the ISR and the
€L r2 SSR. The fluctuation statistics changes within this crossover
222" (32 region. The width of this crossover range depends on the
moment ordeig. We shall estimate this now. Let us rewrite
the first equation of Eq419) by making use of the explicit
form of the scaling functiog(x) according to Eq(36) as

(36)

Sy(r)= >

e r

1+

Again we haved =az, with the Kolmogorov microscaley.

. L\ <]~ @/«
From Eq. (32 one hasSy(r)= (€ /15»)r? in the VSR ¢ Sy(n=uffy(r), fq(r)=[1+|— } . (37
<1) and @%/15) (e, 7)?3(r/1)4?) in the ISR ¢>1). The lat-
ter expression more conventionally is written as
bH(eLr)z%(r/L)T(z/a). y Note thatl<r is consideredS{ecré® for |<r<L and S|
Then, extending this empirical formul®2) to comprise ~ < const forL<r are recovered from Eq37).
the transition to the SSR as well=L, Lohse and Mier- The ISR-SSR crossover takes place atl., independent
Groeling[13] proposed the more general interpolation for-Of d by construction ofg(x). The crossover range width is
mula written as ZL,. The lower scald. ;=L —dL,, where the
crossover starts, is defined as that saafer which Sg(r),
r\2 viz. f4(r), has just half the magnitude it has at the crossover
- centerL itself:
U a2 2/3 !
Sy(r)=—(eLm) 27[2=4(2)]/2 274(2)12° 1
15 ni } i fo(r=Lg)=5To(r=L). (38)
| L

(33 This is a possible and reasonable definition, becéy@g is
an increasing function af for g, for which £(q)>0. On the
This formula was successfully applied to data analysis byther hand, forg with £(q)<O0, f,(r) is a decreasing func-
Lohse and Mier-Groeling and by Grossmann and co- tion of r. We then define, by
workers[9]. Here let us slightly generalize formu(&83) by
writing fa(r=Lg)=2fy(r=L). (39
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Using these definitions and insertifig(r) from Eq.(37) we 21 yle@I=1 - y<q,
; =(1+y «)~ U -
obtain the crossover scalg, as gly)=(1+y™") 1, y>1.
(44)

Lq:L[21+KL/\§(q)\_1]*1/KL, oLg=L—-Ly. (40

. . . ing i u {2) =2 i
Thus, indeed, the widthL ; of the crossover range, which is Ing In the.VSR’uSZOc (yg%)% g(%/) and in Fhe SR one
positive, depends on the moment ordeParticularly, noting ~ correctly findsSy<(yg(y))*=/=y*<. If we write the gen-
=L/\7~0.34, andL...=L for x =2, corresponding to
SLo=L, 8L3=0.62, and 5L,.=0. Thus, if we look at the Sy
ISR. The general observation is that the crossover rangédepends orf(2),i.e., on the intermittency correction itself.
shrinks with increasing moment ordegr For y<1 we haveSjecy?{/42) which does not have the
V. ESS TOWARD SMALLER SCALES, THE VSR? ponclude that ESS@nnqtb_e extended toyva_rd. the VSR, even
if a crossover function is introduced. This is in perfect agree-

the stirring subrange SSR by generalizing the scaling vari- In the case of K41 turbulence, i.e., without intermittency
able fromr/L to (r/L)g(r/L), i.e., by introducing a cross- influencesg(y) from Eq. (44) with {(2)=2/3 simplifies to
agreement with the results obtained in the second of Refs. gK41(y)=(1+y"')2”"=( (46)
[9], where the extension of the ESS toward larger scales was 1, y>1.
toward smaller scalel]. Empirically there was quite a bit . , . )
of support for this hypothesis. Therefore the observations iFa" derive a generalized ESS, usiggx) from Eq. (46).

: , . \ " P A A
which ESS holds, came with some surprise. We now discuss Sg=(ya(y)= V=1 s 47
the question of ESS toward the VSR scales by again using a Yo
range. . . . (although one does not really need them in this cheeause

Consider the generalized interpolation form(B4). Now  the factors3 cancel in{,(q). We conclude that it is the

This crossover function shows, in particular, the correct scal-
£(0)=0, {(3)=1, and|{(+x)|=, we find Ly=0, L,  ©ral scaling with thig,
ro(r) 4@
I_g(l_” : (45
fluctuations through the “filtering”g=0, there exists no
regular power law behavids; =y for yecr —0. We have to
We have derived that ESS is valid toward and well intoment with the results found in Reff9], second paper.
over functiong(r/L). This ESS confirmation is in good y2 y<l,
first noted. The original idea of the ESS was more dlrectechow, in K41 turbulence, for which we have(q) = q/3, one
Ref. [9] that it is large scales instead of small ones toward
y>1.
crossover scaling variable/|)g(r/l), now in thel crossover Al ESS formulas(20)—(23) are valid for K41 turbulence
take eddy scalesin the inertial and viscous subranges, butdeviationof ¢(2) from the K41 value 2/3 which prohibits

well below the outer scale. With the abbreviatiory=r/l, introducing a universal crossover functigfy). SinceZ(2)
from Eq. (34) we have — Zka1(2)=7(2/3) is very small~0.03, ESS isiearlyvalid
for intermittent turbulencenearly means “order of intermit-
y? tency corrections.” In particular, in log-log plots over typi-
Sy (y) (41 cally rather restricted ranges in the VSR of about a one-

oc
k\[2—2(2)1/ k)’
(1+ymlz= @i fifth of a decade, this deviation will hardly be visible for a

not too large value of). Therefore ESS at least approxi-
leading toxy? for y=r/I<1 and to the ISR scalingy*®  mately also holds toward the VSR in intermittent turbulence,
for 1<y=r/l but still y<L/I. In order to compare with the although strictly speaking it is not valid. However, note that
pure power law Eq. (1)] or with the generalized power law in plots with compensated structure functions, which are sen-
[Eg. (19)], the latter having the crossover functignin-  sitive to intermittency corrections, one will find that ESS

cluded, reading here as does not hold because here these corrections are the leading
terms. All this is in good agreement with the results of Benzi
y ror\]¢@ and co-workerd5] as well as of Grossmann, Lohse, and
Sy(y) e I_g( I_) . (42) Reeh[9]. In particular this only approximate validity of ESS,

deteriorated by the anomalous scaling deviations, allows one
to understand the empirical findin§] that ESS can be seen

we rearrange expressigal) into only for r=57.

VI. FLUCTUATION SPECTRUM

K\ 202(2)
SH(y)« )

{(2)
(1+y"')1’“'1 =[yg(y)1‘®.
We now determine the fluctuation spectri8tz) of the
(43)  velocity difference fluctuationsi=<(r/L) 2. To do this we
consider stochastic models as, e.g., the log-normal or log-

In contrast to the ISR-SSR crossover funct@given as Eq.  Poisson models. The log-normal modé,7,14 yields a
(36), g(y) here depends on the anomalous scaling exponertarabolic form ofS(z), and is given in terms of one param-
£(2): eter only, the intermittency exponepnt (=~0.2), as

1+yn
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w(a)=Sa(1-a),

implying

1 w2
Z+§+€

9
S(2)= 2 (48)

S(z) here was obtained from(q) via {(q) and the Legendre
transform algorithm, described above in Sec. Ill.

Very recently, Watanabe and one of the autjdrH dis-
cussed thay dependence of the moment exponefitg) as

PHYSICAL REVIEW B3 026305

differences in turbulence. This turned out to lead to extended
self-similarity (ESS in a quite natural way. We showed that
the refined similarity hypothesi®RSH) (see Ref[7]) can be
generalized by considering a scaling functig(r/L). The
conventional refined similarity hypothesis is incompatible
with the ESS, but the present similarity hypothesis holds in a
much larger region which includes the stirring subrange
(SSR. The fact that ESS is much more valid toward large
scales can also be found in two-dimensional magneto hydro-
dynamics simulationg[18]. Although extension towards
VSR, strictly speaking, is not valid, it nevertheless holds at
least approximately, the deviations being of the order of the
intermittency corrections. With the scaling functigir/L)

well as the spectrurfy(z) of the She-Leveque model, which he eytended refined similarity hypothesis leads to the ex-

is a log-Poisson mod¢l5]. A comparison with the8 model

perimentally and numerically observed ESS.

[16] was made, and the differences between these two mod- We also found that our proposed scaling hypothesis pre-

els were elucidated. In Refl1] it was shown that for large
g (with g>0) the exponent functiof(q) and the corre-
sponding[cf. Egs.(30) and (31)] fluctuation spectruns(z)
can be described by the expansions

7(q)=—yq+do—Ce ¥%, (49
d.—3q* 1—7| 39~ 1-y
S(z)=dy— 3¢ z+—3 neC z 3
(50)

Particularly, employing She-Leveque’s argumé¢hb], we
obtain

2 * y 2

=C= =_ e[ L A—
dp=C=2, y=3. e 1 "3 (51)

which yields
= 2 2|1 2" 52
Ma)=-39+21-|3| |, (529
q. (g} q 2|3

é‘/(q)—§+7' 5)—54'2 1—(5) . (52b)

From Eq.(50) with Egs. (5238 and(52b), one finds

L(_Z_E) 53
2eln? 9 }

This expression is valid in a region wheres —1/9, more
generallyz< —(1—v)/3. In K41 turbulence we have=
—1/3, whichis less than—1/9. Equation(53) is the explicit
formula for the fluctuation spectrur®(z) valid in She-

1
z+ =|In

9

3
S(Z)ZZ— |_3

Leveque’s log-Poisson modEl7]. S(z) can be described as

linear in z with logarithmic corrections.

VIl. SUMMARY AND REMARKS

dicts ESS for energy dissipation rate fluctuations as well as
for the bridging relations between the structure functions of
the velocity differences and those of the energy dissipation
rate. Also, the considerable advantage of using compensated
structure functions was discussed. Furthermore, making use
of an extended form of the Batchelor parametrization, we
obtained explicit formulas for the scaling functigiix), cf.
Egs. (36) and (46). Of course, these can be put together
analogously, as indicated in E@®4). The exponent function
£(q) and the eddy fluctuation spectrusfz) were illustrated
for the log-normal and log-Poisson models. The present the-
oretical results still have to be compared with measured data.
Let us finally comment on the probability densitiq.
(26)]. For the scale in the ISR of developed turbulence, the
velocity difference is scaled as~r", h being equal to the
exponent (-z,) in Eq. (4). The probability density to ob-
serve a local scaling exponent with the values propor-
tional to r3~PM [8], whereD(h) is the fractal dimension,
and is related t&(z) in Eqg. (24) via

1-z
S(Z)=3—D(T) (54)
[3]. Benziet al (1996 [5] and Meneveal6] proposed a
multifractal theory of the probability density for the velocity
differences similar to Eq(26) to find compatibility with
ESS. From the definition of the fluctuation spectrfz)
[Eqg. (24)], we haveS(z)=0 for the possible values o,
which meanD (h)<3. If S(z)>3 for somez, D(h) takes
negative values. This implies that although tlimensionis
conventionally positive, one should be aware that the fractal
dimension can take negative values.
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